Skip header navigation to main content. NREL - National Renewable Energy Laboratory
NREL Publications

Return to Search

Return to Document List Go to Next Document

Document Summary

Title: Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings.
Author: Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.
Pages/Volumes: 13 pp.
Publication Year: 2010
Notes: Presented at the 14th International Heat Transfer Conference (IHTC-14); Washington, DC; August 8-13, 2010
Document Type: Conference Paper
NTIS/GPO Number: 990105
Subject Code Description: Transportation
Abstract: The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.
Accession Number: 48055
Library Notes: NPL-1009 REV
Report Numbers: CP-540-48055

1.1 MB

PDF: This document is available as an Adobe Acrobat PDF. Download Acrobat Reader.